Submodular Optimization over Streams with Inhomogeneous Decays
نویسندگان
چکیده
منابع مشابه
Submodular Optimization Over Sliding Windows
Maximizing submodular functions under cardinality constraints lies at the core of numerous data mining and machine learning applications, including data diversification, data summarization, and coverage problems. In this work, we study this question in the context of data streams, where elements arrive one at a time, and we want to design lowmemory and fast update-time algorithms that maintain ...
متن کاملSubmodular Optimization with Submodular Cover and Submodular Knapsack Constraints
We investigate two new optimization problems — minimizing a submodular function subject to a submodular lower bound constraint (submodular cover) and maximizing a submodular function subject to a submodular upper bound constraint (submodular knapsack). We are motivated by a number of real-world applications in machine learning including sensor placement and data subset selection, which require ...
متن کاملSubmodular Optimization with Routing Constraints
Submodular optimization, particularly under cardinality or cost constraints, has received considerable attention, stemming from its breadth of application, ranging from sensor placement to targeted marketing. However, the constraints faced in many real domains are more complex. We investigate an important and very general class of problems of maximizing a submodular function subject to general ...
متن کاملGuaranteed Non-convex Optimization: Submodular Maximization over Continuous Domains
Submodular continuous functions are a category of (generally) non-convex/nonconcave functions with a wide spectrum of applications. We characterize these functions and demonstrate that they can be maximized efficiently with approximation guarantees. Specifically, I) for monotone submodular continuous functions with an additional diminishing returns property, we propose a Frank-Wolfe style algor...
متن کاملConstrained Robust Submodular Optimization
In this paper, we consider the problem of constrained maximization of the minimum of a set of submodular functions, in which the goal is to find solutions that are robust to worst-case values of the objective functions. Unfortunately, this problem is both non-submodular and inapproximable. In the case where the submodular functions are monotone, an approximate solution can be found by relaxing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33015861